
Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences
© 2022, released under CC BY-SA

CS 4530 Software Engineering
Lecture 9.1: Why Engineer Distributed Software?

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Decide why would you want to build your system as a distributed
system

• Describe 5 key goals of distributed systems
• Analyze a system’s requirements and determine if it should be

implemented as a distributed system or not

What is a distributed system?

Model:
Many servers talking through a network

Model:
Many servers and clients talking through a network

Why expand to distributed systems?

• Scalability

• Performance

• Latency

• Availability

• Fault Tolerance

“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

Example: Domain Name System (DNS)
Problem Statement

• Nodes (hosts) on a network are identified by IP addresses

• E.g.: 142.251.41.4

• We humans prefer something easier to remember: calendar.google.com,
facebook.com, www.khoury.northeastern.edu

• We need to keep a directory of domain names and their addresses

• We also need to make sure everybody gets directed to the correct host

Example: Domain Name System (DNS)

• Need to handle millions of DNS queries per second

• Not immediately obvious how to scale: how do we maintain replication, some
measure of consistency?

6

DNS Server

facebook.com?
31.13.66.35

http://facebook.com/

• Obvious solution: Use a Local file
• Keep local copy of mapping from all hosts to all IPs (e.g., /etc/hosts)
• Hosts change IPs regularly: Download file frequently
• Lot of constant internet bandwidth use
• IPv4 space is now full
• 32-bits: 4,294,967,296 addresses
• At 1 byte per address, file would be 4GB
• Not a lot of disk space (now, DNS introduced in the late 80s)

Domain Name System

7

• Obvious solution: Use a Local file
• Keep local copy of mapping from all hosts to all IPs (e.g., /etc/hosts)
• Hosts change IPs regularly: Download file frequently
• Lot of constant internet bandwidth use
• IPv4 space is now full
• 32-bits: 4,294,967,296 addresses
• At 1 byte per address, file would be 4GB
• Not a lot of disk space (now, DNS introduced in the late 80s)

Domain Name System

8

We need 200x of these
to hold 4GB: $270K+

Domain Name System
• Obvious solution: Use a Local file
• Keep local copy of mapping from all hosts to all IPs (e.g., /etc/hosts)
• Hosts change IPs regularly: Download file frequently
• IPv4 space is now full
• 32-bits: 4,294,967,296 addresses
• At 1 byte per address, file would be 4GB
• Not a lot of disk space (now, DNS introduced in the late 80s)
• But a lot of constant internet bandwidth

• More names than IPs
• Aliases

• Not scalable!

9

• Another Obvious Solution: Well-known centralized server
• Single point of failure
• Traffic volume
• Access time
• Ultimately, not scalable!

Domain Name System

10

https://a.root-servers.org/metrics

http://a.root-servers.org/static/index.html

• We need a scalable solution
• New hosts keep being added
• Number of users increases
• Need to maintain speed/responsiveness

• We need our service to be available and fault tolerant
• It is a crucial basic service
• A problematic node shouldn’t “crash the internet”

• Parts of the system should be maintainable independently
• E.g., national domains
• Maintaining it shouldn’t add significant amount of traffic

• Global in scope
• Domain names mean the same thing everywhere

DNS as a distributed system

11

Distributed Systems Goals

• Scalability

• Performance

• Latency

• Availability

• Fault Tolerance

“the ability of a system, network, or
process, to handle a growing amount

of work in a capable manner or its
ability to be enlarged to

accommodate that growth.”

“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

Distributed Systems Goals

• Scalability

• Performance

• Latency

• Availability

• Fault Tolerance

“is characterized by the amount of
useful work accomplished by a

computer system compared to the
time and resources used.”

“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

Distributed Systems Goals

• Scalability

• Performance

• Latency

• Availability

• Fault Tolerance

“The state of being latent; delay, a
period between the initiation of
something and the it becoming

visible.”

“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

“Distributed Systems for Fun and Profit”, Takada

Distributed Systems Goals

• Scalability

• Performance

• Latency

• Availability

• Fault Tolerance

“the proportion of time a system is in
a functioning condition. If a user

cannot access the system, it is said
to be unavailable.”

Availability = uptime / (uptime + downtime).

Availability % Downtime/year
90% >1 month
99% < 4 days

99.9% < 9 hours
99.99% <1 hour
99.999% 5 minutes
99.9999% 31 seconds

Often measured in “nines”

http://book.mixu.net/distsys/intro.html

Distributed Systems Goals

• Scalability

• Performance

• Latency

• Availability

• Fault Tolerance

“ability of a system to behave in a
well-defined manner once faults

occur”

What kind of faults?

Disks fail
Power supplies fail

Power goes out

Networking fails
Security breached

Datacenter goes offline
“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

Challenges
More Machines, more problems

Challenges
More machines, more problems

• Say there’s a 1% chance of having some hardware failure occur to a machine
in a given month (power supply burns out, hard disk crashes, etc)

• Now I have 10 machines

• Probability(at least one fails during the month) = 1 - Probability(no machine
fails) = 1-(1-.01)10 = 10%

• 100 machines -> 63% chance that at least one fails

• 200 machines -> 87% chance that at least one fails (!)

Challenges
Number of nodes + distance between them

Challenges
Number of nodes + distance between them

DC

NY

LONDON

SFEven if cross-city links are fast and cheap (are they?)
Still that pesky speed of light…

More challenges:
Networks still fail, intermittently and for prolonged periods

And still more challenges
We still rely on other administrators, who are not infallible

Should we still make our software distributed?
Reflecting on goals + challenges

• Do we need to store more data than one computer can store?

• Do we need to process requests faster than one computer can?

• Are we willing and able to take on these additional complications?

• Next lesson: what tools do we have at our disposal?

