CS 4530 Software Engineering

Lecture 9.1: Why Engineer Distributed Software?

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand

Khoury College of Computer Sciences
© 2022, released under CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Decide why would you want to build your system as a distributed
system

» Describe 5 key goals of distributed systems

* Analyze a system’s requirements and determine if it should be
implemented as a distributed system or not

What is a distributed system?

G e e

Model; Model:
Many servers talking through a network Many servers and clients talking through a network

Why expand to distributed systems?

* Scalability

* Performance
* Latency

* Availability

* Fault Tolerance

“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

Example: Domain Name System (DNS)

Problem Statement

* Nodes (hosts) on a network are identified by IP addresses

* E.g.: 142.251.41.4

* We humans prefer something easier to remember: calendar.google.com,
facebook.com, www.khoury.northeastern.edu

* We need to keep a directory of domain names and their addresses

* We also need to make sure everybody gets directed to the correct host

Example: Domain Name System (DNS)

* Need to handle millions of DNS queries per second

* Not immediately obvious how to scale: how do we maintain replication, some
measure of consistency?

DNS Server

,Jrgh
acebook.co z T
" " A 2
A —
© —
& Q) “—‘Jl';:y
© —
TGRE ‘*"’,.)'Lm
‘ - © —iA =
—_ ®) 3
. 19, i
|12 | A
TGRE ‘*"’,.)'Lm
|12 | A
— © o
- @) ‘»-'—"_(
- © '

http://facebook.com/

Domain Name System

* Obvious solution: Use a Local file
* Keep local copy of mapping from all hosts to all IPs (e.qg., /etc/hosts)
* Hosts change IPs regularly: Download file frequently
* Lot of constant internet bandwidth use
* |Pv4 space is now full
* 32-bits: 4,294 967,296 addresses
* At 1 byte per address, file would be 4GB
* Not a lot of disk space (how, DNS introduced in the late 80s)

Domain Name System

Obvious solution: Use a Local file

* Keep local copy of mapping from all hosts to all IPs (e.qg., /etc/hosts)
* Hosts change IPs regularly: Download file frequently

* Lot of constant internet bandwidth use

* |Pv4 space is now full We need 200x of these
* 32-bits: 4,294,967,296 addresses to hold 4GB: $270K+

o -l L1 . .. ol e o AN
¢ At 1 byte pel L:f ;’andy 100?8/33001/‘&/000 cf)r PC Compatlble on a user-installable cardd)
ncludes manual and soitware for easy installation. The easy way to get hard | | o
disk power for your computer system. 25-4059 799.00 : Inﬂatlon C alcu13t0r
° N | f isk Dri 2d
ot alot or C Add an External Hard Disk Drive =10 . 1989 (enter year)
00 Low As | purchased an item for $ 699.99
699 $40 Per Month
| then in 2018 (enter year)
= Alternative Expansion Option
= Allows Greater Data Storage that same item would cost: $1,391.65
20-Megabyte Extemal Hard Disk Drive. (Cable Kit and installation required Cumulative rate of inflation: 98.8%
for secondary umt) Requires Hard Dusk ontroller Board (25-1007).
PENORL .. R e 699.00
Hard Disk Controller Board. For Tandy 1000 SX/SL and original Tandy 1000 Sl =
only. Allows you to add hard disk drives for up to 40 million characters of
storage. Includes cable for use witt ,,;,;;;wo; a}nmegabyte hard disks.
25-1007 rT iy U B R 299.95
180 ot S ES APPLY AT PARTICIPATING RAI

Domain Name System

* Obvious solution: Use a Local file
* Keep local copy of mapping from all hosts to all IPs (e.qg., /etc/hosts)
* Hosts change IPs regularly: Download file frequently
* |Pv4 space is now full
* 32-bits: 4,294 967,296 addresses
* At 1 byte per address, file would be 4GB
* Not a lot of disk space (how, DNS introduced in the late 80s)
* But a lot of constant internet bandwidth
* More names than IPs
* Aliases
* Not scalable!

Domain Name System

* Another Obvious Solution: Well-known centralized server

. . . A-root Query Volume (Millions/Day)
* Single point of failure
B Pv6 TCP Queries [l 'Pv6 UDP Queries [Pv4 TCP Queries |} IPv4 UDP Queries

* Traffic volume
* Access time
* Ultimately, not scalable! -

4,000

3,000

2,000

1,000

0

Apr 2021 May 2021 Jun 2021 Jul 2021 Aug 2021 Sep 2021 Oct 2021 Nov 2021 Dec 2021 Jan 2022 Feb 2022 Mar 2022

https://a.root-servers.org/metrics

10

http://a.root-servers.org/static/index.html

DNS as a distributed system

* We need a scalable solution
* New hosts keep being added
* Number of users increases
* Need to maintain speed/responsiveness
* We need our service to be available and fault tolerant
* |tis a crucial basic service
* A problematic node shouldn’t “crash the internet”
* Parts of the system should be maintainable independently
* E.g., national domains
* Maintaining it shouldn’t add significant amount of traffic
* Global in scope
* Domain nhames mean the same thing everywhere

11

* Scalability
* Performance
* Latency

* Availability

* Fault Tolerance

Distributed Systems Goals

“the ability of a system, network, or
process, to handle a growing amount
of work in a capable manner or its
ability to be enlarged to
accommodate that growth.”

“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

* Scalability

* Performance
* Latency

* Availability

* Fault Tolerance

Distributed Systems Goals

“Is characterized by the amount of
useful work accomplished by a
computer system compared to the
time and resources used.”

“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

* Scalability

* Performance
* Latency

* Availability

* Fault Tolerance

Distributed Systems Goals

“The state of being latent; delay, a
period between the initiation of
something and the it becoming

visible.”

“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

* Scalability
* Performance

* Latency

Distributed Systems Goals

“the proportion of time a system is In
a functioning condition. If a user
cannot access the system, it is said

to be unavailable.”

Availability = uptime / (uptime + downtime).

* Availability

* Fault Tolerance

99.9999% 31 seconds

Often measured in “nines’”

Availability % Downtime/year

90% >1 month
99% < 4 days
99.9% < 9 hours
99.99% <1 hour
99.999% 5 minutes

1da

http://book.mixu.net/distsys/intro.html

Distributed Systems Goals

“ability of a system to behave in a

* Scalability well-defined manner once faults
* Performance oceur”

* Latency

* Avallability

What kind of faults?
Fault Tolerance

Disks fall Networking fails

Power supplies fall Security breached

Datacenter goes oftline
Power goes out

“Distributed Systems for Fun and Profit”, Takada

http://book.mixu.net/distsys/intro.html

Challenges

More Machines, more problems

=) S # \

:‘ W . lll‘ll' *- R’)
Al ' A | .| L Al L
[] : : ! .
o —]
e e e O 0000000000000 e e e 0 TN000000RERR0000000n T OO O .
o o o o o Jo o ° o fJo fJo o fJo Jo Jeo — o o o o o o o bt B B 5 O] 0] [~] [ot lecle =
: . = —
: Satts =
: : Site ;
G (= o o)
© : @ © siile @ © @
: hie
: iete
- $ e
Ao s o OO OO0 : Siiis

£l L_JE L_J§ 8 : ,

OGSO aas b « CCRUICN RN s

solsolsolsclscl+cl+c] « « [solsclsclsclsclsolE
58
58
38
8.2
: ot
@) e s @)
g S @
T
it
e
Site
5.8
G SR
'J. . c‘
OO & L aEaeE
solsolsclsolsclsclsc)] « ¢« [sclscleclsclsclsals
8.8
S8
8 8
88
e
© s : ©
e
e
53
e
Siite
G L = Y
‘J. -. -. L\
_ e
e w0 e 0o N00000EERE 0000000 S o
solsolsclsclscl+-]+ e [solsoIsolscl=cl=ol&
.
.
.
=
o CIRO) :
@ ° o @)
g S @
G
RS
e
Siite
Siise
erele I =)
‘J. -. -. L‘
o e
e (e = OO0 - ~ —
DG G ez UL & 100
solsolsclsclscl+cl+c) « « [solsclsclsclsclsole o - - %
: e JI - - L
58
Q0 5 . b
8.2
*R R : 3 S) ® a N
G S [N 1L s s 0000000000000 .
’ - . - . - o o >
) L s o solsol=clsclscl-1°°) » « ooleclecloclocolonle
. . . RGO °
e 53
~ Qg :
IOy & e ° o :
solsolsolsclsolscl+c) « - [sclsclsclsclscls0lE s Q@) e @
:
88 e
8 8 e
8 2
ot 2
@ s @)
g Siite R i
B
RR
52
e
Siise

Challenges

More machines, more problems

* Say there’s a 1% chance of having some hardware failure occur to a machine
In a given month (power supply burns out, hard disk crashes, etc)

* Now | have 10 machines

* Probabillity(at least one fails during the month) = 1 - Probability(ho machine
fails) = 1-(1-.01)'1° = 10%

* 100 machines -> 63% chance that at least one fails

* 200 machines -> 87% chance that at least one fails (!)

Challenges

Number of nodes + distance between them

el el UL & i
J. ; : L
e e e 000 0000000RER00000008 TR
“FrFEFEEFEEFL: :FTEETET:
]
38
2.8
HE
St
@) o o ()
~— o o -
s 3
H
= = e
OHG OO S
£l |} “
. .
_
0 (00000 SO0
SRR L: c: FTTT
3.8
olits
3 .8
3.8
; I
© s @
s 2
I
Suis
e
I
OIG S S NN
£l |} . “
S ' .
—_— —_—
0 OO = A
= 6 6 6 6 i i RO X .
38
olits
I
3482
I
@) o o @)
< e @
s e
s 3
Siis
28
Shite
anene G
I : L
. |
—
‘ G & e
7 6 6 O G i R B G
I
2 8
2.8
3.8
Site
@) ° o (@)
~— o o >
s 3
I
s
Se
HE

). L =)
el | | L
— —
e 0000000SE-S0000000e
5 solsclsc] « e« [soleclsclsclscls0lE
88
58
5 8
8.2
ot
@ ° o @)
R e @
0
3
53
Qg
Siise
). N = Y
£l | | L
S 2 . b
— —
S 0000000S-S0000000E
5 solsclsc] « « [soleclsclsclscls0lE
88
58
5 8
8.2
ot
Q) ° o @)
R e @
0
3
53
Qg
Shise

OO UL e
’J‘ . . c\
. -o -.
— ,
R o oo G VNN 58488
sl 0 10-10-10-1- T T-T-T1-1T 1T
.
.
e o
O
@) °o o @
N o ° e
e o
s o
OO
ot
P
D= PELLEE
'Jo . . c.
. - -.
e
CORC O B UUUOUDU G USSR
B EEED N EEEEEED
.
.
.
°
°
(=) ° @
g ° &
°
°
°
°
°
DD Qs UL e
‘J. i i “
. -. -.
e G UCRUIUUROUSSESES
sl 000000 «cMF-T-01-101-10-1-1T°
oiite
ofite
oiite
ot
; ofile
(=) °o o (@)
— o ° D
s o
alieta
o o
e
o ire

Challenges

Number of nodes + distance between them

’J|'.OjQv->:=|::i=:m“]'1mI 5 m“l:” E '7'0 J - : I]IZ““ : “““:I I e I LI LI

i ; »
SO [N [N & = L = .

Saenar = o ¢ i ——
T i— o : i

| e o
g T
7 = o e i o inn e
. - 3
e T ITTRERTITTIT) =
[i i 5 2
TR
2} @

(ST []

el
®

s G

Even If cross-city links are fast and cheap (are they?)

Still that pesky speed of light...

Lm0

More challenges:

Networks still fail, intermittently and for prolonged periods

) ® (] < O O B arstechnica.com X ©) lﬁ -+

dl'S TECHNICA

BIZ & IT —

The discovery of Apache ZooKeeper’s poison
packet

How PagerDuty found four different bugs.

EVAN GILMAN - 5/13/2015, 9:00 AM

Evan Gilman is an operations engineer at PagerDuty, responsible for designing and automating
the company's resilient infrastructure. Prior to PagerDuty, he operated AS4511 at the University
of Miami, and has a passion for all things network. This story originally appeared on PagerDuty.

ZooKeeper, for those who are unaware, is a well-known open source project that enables highly reliable
distributed coordination. It is trusted by many around the world, including PagerDuty. It provides high
availability and linearizability through the concept of a leader, which can be dynamically re-elected, and
ensures consistency through a majority quorum.

The leader election and failure detection mechanisms are fairly mature, and typically just work... until
they don't. How can this be? Well, after a lengthy investigation, we managed to uncover four different
bugs coming together to conspire against us, resulting in random cluster-wide lockups. Two of those
bugs lay in ZooKeeper, and the other two were lurking in the Linux kernel. This is our story.

Background: The use of ZooKeeper at PagerDuty

Here at PagerDuty, we have several disparate services that power our alerting pipeline. As events are
received, they traverse these services as a series of tasks that get picked up off of various work queues.
Each one of these services leverages a dedicated ZooKeeper cluster to coordinate which application host
processes each task. As such, you can imagine that ZooKeeper operations are absolutely critical to the
reliability of PagerDuty at large.

Part I: The ZooKeeper bugs

eoe0e [< O O B & wired.com ¢ ©) ﬁ

= m I mEm BACKCHANNEL BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY SIGN IN SUBSCRIBE
LILY HAY NEWMAN BUSINESS B86.29.2818 B87:57 PM

Friday's Massive Comcast Outage Shows How
Fragile the Internet s

Comcast customers across the country experienced outages Friday, thanks to multiple cuts to fiber optic cables.

Blame cuts to fiber optic cables for Comcast's outage Friday. GETTY IMAGES

+

Q

And still more challenges

We still rely on other administrators, who are not infallible

Amazon Web Services
outage takes a portion of
the internet down with it

Zack Whittaker C]

@zackwhittaker / 12:32 PM EST * November 25, 2020 Comment

[©] Image Credits: David Becker / Getty Images

Amazon Web Services is currently having an outage, taking

a chunk of the internet down with it.

Several AWS services were experiencing problems as of
early Wednesday, according to its status page. That means
any app, site or service that relies on AWS might also be

down, too. (As | found out the hard way this morning when

El) < O O B & aws.amazon.com ¢ ©)

aWS Contact Sales Support¥ Englishv My Account~ Sign In to the Console
v‘)

Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events Explore More

Summary of the Amazon Kinesis Event in the Northern Virginia (US-EAST-1)
Region
November, 25th 2020

We wanted to provide you with some additional information about the service disruption that occurred in the Northern Virginia (US-EAST-1) Region on
November 25th, 2020.

Amazon Kinesis enables real-time processing of streaming data. In addition to its direct use by customers, Kinesis is used by several other AWS services.
These services also saw impact during the event. The trigger, though not root cause, for the event was a relatively small addition of capacity that began
to be added to the service at 2:44 AM PST, finishing at 3:47 AM PST. Kinesis has a large number of “back-end” cell-clusters that process streams. These
are the workhorses in Kinesis, providing distribution, access, and scalability for stream processing. Streams are spread across the back-end through a
sharding mechanism owned by a “front-end” fleet of servers. A back-end cluster owns many shards and provides a consistent scaling unit and fault-
isolation. The front-end's job is small but important. It handles authentication, throttling, and request-routing to the correct stream-shards on the
back-end clusters.

The capacity addition was being made to the front-end fleet. Each server in the front-end fleet maintains a cache of information, including
membership details and shard ownership for the back-end clusters, called a shard-map. This information is obtained through calls to a microservice
vending the membership information, retrieval of configuration information from DynamoDB, and continuous processing of messages from other
Kinesis front-end servers. For the latter communication, each front-end server creates operating system threads for each of the other servers in the
front-end fleet. Upon any addition of capacity, the servers that are already operating members of the fleet will learn of new servers joining and
establish the appropriate threads. It takes up to an hour for any existing front-end fleet member to learn of new participants.

At 5:15 AM PST, the first alarms began firing for errors on putting and getting Kinesis records. Teams engaged and began reviewing logs. While the new
capacity was a suspect, there were a number of errors that were unrelated to the new capacity and would likely persist even if the capacity were to be
removed. Still, as a precaution, we began removing the new capacity while researching the other errors. The diagnosis work was slowed by the variety
of errors observed. We were seeing errors in all aspects of the various calls being made by existing and new members of the front-end fleet,
exacerbating our ability to separate side-effects from the root cause. At 7:51 AM PST, we had narrowed the root cause to a couple of candidates and
determined that any of the most likely sources of the problem would require a full restart of the front-end fleet, which the Kinesis team knew would be
a long and careful process. The resources within a front-end server that are used to populate the shard-map compete with the resources that are used
to process incoming requests. So, bringing front-end servers back online too quickly would create contention between these two needs and result in
very few resources being available to handle incoming requests, leading to increased errors and request latencies. As a result, these slow front-end
servers could be deemed unhealthy and removed from the fleet, which in turn, would set back the recovery process. All of the candidate solutions
involved changing every front-end server’s configuration and restarting it. While the leading candidate (an issue that seemed to be creating memory
pressure) looked promising, if we were wrong, we would double the recovery time as we would need to apply a second fix and restart again. To speed
restart, in parallel with our investigation, we began adding a configuration to the front-end servers to obtain data directly from the authoritative
metadata store rather than from front-end server neighbors during the bootstrap process.

At 9:39 AM PST, we were able to confirm a root cause, and it turned out this wasn't driven by memory pressure. Rather, the new capacity had caused all
of the servers in the fleet to exceed the maximum number of threads allowed by an operating system configuration. As this limit was being exceeded,

Should we still make our software distributed?

Reflecting on goals + challenges

* Do we need to store more data than one computer can store?
* Do we need to process requests faster than one computer can?
* Are we willing and able to take on these additional complications?

* Next lesson: what tools do we have at our disposal?

